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Abstract

In many acoustic signal processing applications human listeners are able to outperform automated process-
ing techniques, particularly in the identification and classification of acoustic events. The research discussed
in this paper develops a framework for employing perceptual information from human listening experiments
to improve automatic event classification. We focus on the identification of new signal attributes, or fea-
tures, that are able to predict the human performance observed in formal listening experiments. Using this
framework, our newly identified features have the ability to elevate automatic classification performance
closer to the level of human listeners.

We develop several new methods for learning a perceptual feature transform from human similarity
measures. In addition to providing a more fundamental basis for uncovering perceptual features than
previous approaches, these methods also lead to a greater insight into how humans perceive sounds in a
dataset. We also develop a new approach for learning a perceptual distance metric. This metric is shown
to be applicable to modern kernel-based techniques used in machine learning and provides a connection
between the fields of psychoacoustics and machine learning.

Our research demonstrates these new methods in the area of active sonar signal processing. There is
anecdotal evidence within the sonar community that human operators are adept in the task of discriminat-
ing between active sonar target and clutter echoes. We confirm this ability in a series of formal listening
experiments. With the results of these experiments, we then identify perceptual features and distance met-
rics using our novel methods. The results show better agreement with human performance than previous
approaches. While this work demonstrates these methods using perceptual similarity measures from active
sonar data, they are applicable to any similarity measure between signals.




Chapter 1

Introduction

1.1 Research Statement

For many aural (acoustic) signal processing tasks, humans are known to perform better than automated
classification systems. For such applications, it may be beneficial to identify aspects of the approach
used by humans and integrate those aspects into an automatic classification system. In applications
such as speech recognition, superior human performance could be the result of high level processing (e.g.
language models); in other applications, such as identification of transient signals, the key to human
performance may lie closer to the periphery, perhaps in the identification and extraction of useful acoustic
signal features for classification. Current features used in transient signal classification do not always
provide acceptable performance; accordingly, new features are desired that yield the superior classification
performance observed in humans. This research focuses on the acoustic feature problem. Specifically,
we utilize the results of formal listening experiments to examine short duration transient signals from
active sonar systems with the goal of learning new potentially useful feature transforms to aid automatic
classification.

In the processing of transient and other nonstationary acoustic signals, features are commonly derived
from the statistics of the acoustic signal. These statistical features are calculated from a number of different
signal domains, such as, time, frequency, and joint time-frequency. Using a set of training signals, the
statistical features with the greatest discrimination power are identified by the researcher and subsequently
used to build an automatic classifier. This data-driven approach has yielded numerous features, but these
features rarely provide the same classification ability as observed in humans. An alternate approach for
identifying new features is a perceptually-driven one, in which features are derived based on their relevance
to perception.

In order to scientifically identify what acoustic signal information humans find perceptually important,
formal listening experiments are required. These experiments are used to gather numeric measures of how
a set of sounds are perceptually organized. For example, in one such experiment humans are asked to
listen to pairs of sounds and rate their similarities on some predefined scale. Their similarity judgments
reflect an underlying perceptual feature space that humans use when comparing these sounds. Traditional
psychoacoustics involves correlating a known set of signal features against the results of these experiments,
allowing researchers to access the perceptual relevance of each feature (1]. The limitation of this approach
is that it confines the researcher to previously defined signal features. A new approach is desired that can
learn the signal features that correspond to observed perceptual results while not requiring a priori choices
of candidate features.

The goal of the research outlined in this paper is to bridge the work in analyzing perceptual information
with modern signal processing techniques for feature identification. The signal processing approach used
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Figure 1.1: Flowchart illustrating the design of an automatic classification system.

by data-driven methods is extended from simple class separation to a regression against the results of a
listening experiment. This expands traditional perceptual analysis from simple hypothesis testing to a
perceptually-driven “feature discovery” process. While the proposed methods will be applied to the results
of a similarity listening experiment using active sonar data, it is applicable to other perceptual domains
(e.g. visual) and similarity measures.

1.2 Approach

The task of classifying an acoustic signal can be broken into two major stages. First, a number of signal
attributes (or features) are extracted from the acoustic signal. This strips the signal of excess information
and results in a low-dimensional feature space in which (hopefully) the signal is well described. Next, a
class decision is made based on a specific model of this feature space. This model assigns a class label to
the acoustic signal based on its location in the feature space. The goal of research in the area of pattern
recognition is therefore to identify strong feature spaces and classifier models.

Figure 1.1 shows a flowchart illustrating the design stages in building an automatic classifier. Typically
the feature space and classifier model are chosen based on a set of training data. This data is a collection of
example signals, { X'} and associated class labels, {Y'}, that were collected roughly in the same environment
that the classifier will operate in. From this data, signal features are identified such that training signals
of differing classes are well separated. Once specific features are isolated, a classifier model is then built
based on the location of the training data in this feature space. In this research we focus on the first
step, identifying an appropriate feature space because, without a descriptive feature space, a reliable class
decision cannot be made by any model.

In this paper we examine the perceptual feature space used by human listeners. We include perceptual
judgements, {P}, from human listening experiments in addition to the standard training data, {X,Y},
when building an automatic classifier. As humans often outperform standard automatic classification
systems, this additional information can lead to identification of new and more useful signal features. Even
though we cannot directly access the perceptual feature space humans use when judging sounds, listening
experiments allow us to gather information about it. Comparative judgements (e.g. similarity ratings)
from human listeners provide us with insight as to how signals are arranged in their own perceptual space.
Using these judgements, this research develops a framework for learning a transformation from a calculable




feature space N to a perceptual feature space P,

P =T{N} (1.1)

The following chapter in this paper provides a background of the area of pattern recognition from both
a perceptual and statistical perspective. Next, the area of active sonar is introduced. In this chapter
we describe three datasets that will be used in subsequent chapters. In chapter 4 a series of listening
experiments that we conducted are described. These experiments evaluate human classification ability as
well as provide detailed information regarding the preception of active sonar echoes. Chapter 5 and 6
introduce a series of new approaches that utilize the results of these listening experiments to uncover new
feature domains and distance metrics. Chapter 7 describes an approach for perceptually weighting a set

of training data. This weighting is shown to improve the estimation of the Bayesian likelihood function.
Finally, conclusions and future work are discussed in Chapter 8.




Chapter 2

Pattern Recognition

This chapter introduces some fundamental topics that will be covered in depth in this paper. We review
current theory in the area of pattern recognition from both a psychoacoustic perspective as well as a
statistical perspective. In the area of psychoacoustics we review signal detection theory as well as various
perceptual experimental designs. We then provide an overview of statistical pattern recognition, focusing
on feature identification and how it relates to classifier design. The research presented in this paper is
meant to bridge the gap between the work that has previously been done in these two distinct areas.

2.1 Psychoacoustic Pattern Recognition

Psychoacoustic pattern recognition is an area within psychoacoustics dedicated to understanding how hu-
mans perceive differences between sounds. This area is often referred to as the study of musical timbre.
Defined as “the subjective attribute of sound which differentiates two or more sounds that have the same
loudness, pitch and duration” [2], timbre has been dubbed the psychoacoustician’s multidimensional waste-
basket category [3]. This characterization has evolved because timbre has been used to describe just about
everything regarding a sounds perceptual nature. Psychoacoustic pattern recognition attempts to pin down
specific signal attributes that comprise a sound’s timbre.

Carefully designing a series of listening experiments is the first challenge when attempting to measure
any psychoacoustic information. The following section provides a short introduction into the area of signal
detection theory in psychology. It reviews the processes that are thought to be performed when someone
makes a perceptual signal classification. We then introduce two experimental designs and discuss the
previous work in analyzing the results of these experiments.

2.1.1 Signal Detection Theory

Perceptual classification can be viewed as a decision humans make based on both sensory and cognitive
evidence [4]. To follow how this decision is made, we break down a perceptual classification into two
independent processes: a sensory process and a decision process. Figure 2.1 illustrates these processes.

First, a sensory process receives the incoming stimuli and converts them from acoustic pressure waves to
relevant perceptual cues or sensory evidence. This sensory evidence provides the bases for which a decision
can be made. Next, a boundary must be drawn that separates sensory evidence into distinct classes. This
boundary is made based on an individual’s willingness to identify a sound as part of a particular class.
This willingness, or cognitive evidence, can be seen as a subject’s understanding of what sensory evidence
comprises a sound from a particular class. By combining both sensory and cognitive evidence, a person
can identify a sound as a member of a particular class.

w
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Figure 2.1: Flowchart of the processes that occur in a perceptual classification task.

Each of these stages is a separate process with its own source of variability that needs to be modeled.
Sensory variability results from the diversity of sounds within a particular class. Decision variability comes
from criterion shifts between subjects in an experiment. A criterion shift is the difference between subjects
in their willingness to identify a sound as belonging to a particular class. For the purposes of this research
we are interested in gaining an understanding of human sensory evidence, rather than where an individual
subject places his decision criterion. Therefore, in the following experiments, we will utilize a variable
criterion signal detection model [4-6] in order to isolate human sensory evidence.

2.1.2 Aural Classification

In order to investigate perceptual classification, we first consider a straightforward classification experiment
to assess how well humans can aurally identify sounds of different classes. In addition to providing a baseline
performance level, this experiment determines if subjects can perform the classification task at all. For the
purpose of this paper we focus on the two-class problem, which we henceforth refer to as target vs. clutter.

This experiment is deceptively simple. It must be carefully designed in order to accommodate for
changes in decision criterion between subjects. Therefore, aural classification experiments typically employ
a multi-level rating scale as opposed to requiring a subject to definitively identify a sound as a member
of a particular class [7]. One common multi-level rating scale is a probability scale, where a subject is
asked to rate the probability a sound came from the target class. This probability rating allows the subject
to assign a confidence rating to each sound. This rating provides the researcher with multiple decision
criteria, one for each probability level.

In order to assess how well a subject is performing, the percentage of correctly identified targets (hit
rate) and incorrectly identified clutter (false alarm rate) needs to be calculated. With a multi-level rating
system, multiple sets of hit and false alarm rates can be calculated by using different probability thresholds.
For example, one threshold treats both low and high probability responses as a rating for a target, and
another treats only high probability responses as a rating for target. These thresholds are assumed to lie
along some internal perceptual dimension that separates the sensory driven target distribution from the
clutter distribution. If we assume both targets and clutter are normally distributed along this perceptual
dimension, then we can extrapolate a receiver operating characteristic (ROC) curve from these operating
points. This approach is referred to as a binormal model and is illustrated in Figure 2.2. Violations
of this assumption often have little practical significance in assessing a subject’s classification ability 4]
All perceptual ROC curves generated for this paper were calculated from a maximum likelihood fit to a
binormal model using the online software JROCFIT (8].

Using this model, overall sensory performance can be quantified by employing d’ (“d prime”) sensitivity
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Figure 2.2: a) Perceptual representation of sounds from two different classes under a binormal assumption;
b) interpolated ROC curve from a multi-level rating scale and binormal assumption.

analysis,

. . . (2.1)
3 (o +a2)

where p; and p. are the means and o, and o, are the standard deviations of the target and clutter
distributions respectively. A d’ value of zero indicates the target and the clutter distributions are completely
overlapping. As d' increases in value from zero, the separation between the target and clutter distributions
increases, indicating greater sensitivity. This sensitivity is also apparent in the ROC curve as the curve
bows away from the diagonal line (which indicates chance performance), until at extreme values it is along
the outer walls of the graph (low false alarm, high hit rates).

2.1.3 Aural Similarity

In order to get a better understanding of how humans perform an aural classification task, more detailed
perceptual information regarding the sound’s timbre is needed. Most quantitative approaches describing
timbre perception use some measure for perceptual distance between sounds [9]. These perceptual distance
measures are usually gathered directly from a similarity experiment in which subjects are asked to rate
the similarity between pairs of sounds. This type of experiment provides a distance metric describing a
subject’s underlying timbre space. We wish to quantify this timbre space using physical signal attributes.

As timbre is most likely a multidimensional attribute, most studies in timbre rely on a numerical
technique known as multidimensional scaling (MDS) [1, 10-15]. MDS is a nonlinear data analysis technique
which takes known (perceptual) distances between data points and identifies a low dimensional Euclidian
space that maintains those distances [16, 17]. This projection is accomplished through an iterative process
where data points are moved around in a P dimensional space until some goodness of fit criterion is met. In
psychoacoustic applications, a version of MDS called nonmetric MDS is most commonly used. In nonmetric
MDS the goodness of fit criterion is referred to as “stress” and is defined as
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where d(-.-) is the Euclidian distance between two datapoints in the MDS space and 4(-,-) is the recorded
perceptual distance between two points. The function f(-) is a nonlinear scaling function that allows for a
nonlinear relationship between perceptual distance and Euclidian distance. While absolute location in the
MDS space is arbitrary, the relative locations between sounds reflect the perceptual distance measures.
The space produced by MDS can be viewed as a perceptual feature space representing the acoustic
cues subjects use when judging aural similarity [1]. The problem inherent in this approach is that the
axes produced by MDS analysis are not labeled. The goal of MDS studies is to identify physical signal
features that define these axes, thus quantifying the perceptual signal representation. Most research in this
area has focused on identifying these signal features a priori and using MDS analysis as a validation tool.
Feature validation is accomplished by correlating a hypothesized signal feature for each sound against their
corresponding location along each dimension of the MDS space (e.g. [10, 12, 14, 15]). This correlation
provides a metric defining the degree of perceptual relevance of a hypothesized feature. While a number
of perceptually-relevant features have been identified using this methodology, previous studies have not
provided an approach for identifying new features from the perceptual similarity data. The approaches

outlined in Chapters 5 and 6 introduce a new methodology for identifying new perceptually relevant features
from similarity data.

2.2 Statistical Pattern Recognition

Statistical pattern recognition is the process of automatically identifying patterns within raw data based
on learning/modeling relationships within that data. In acoustic signal classification, the patterns which
are learned are the class labels of the signals (e.g. speech recognition). In this section we review previous
work in the area of acoustic signal classification, focusing on the feature identification stage.

2.2.1 Features

The first step to automatically classify an acoustic signal is to identify an appropriate feature space.
Feature identification is the process of extracting relevant information from an acoustic waveform in order
to provide a low dimensional signal description to a classifier model. In many applications researchers
simply choose features based on what has worked well in previous applications. These features typically
encode information about the shape of the acoustic waveform in some domain, for example, the time
domain, the spectral domain or even the time-frequency domain. There has also been interest in identifying
application-specific signal features. These features are derived based on a set of training data for a specific
classification task. Below we list a few commonly used feature spaces used in previous applications as well
as some known methods for identifying data dependent feature spaces.

Data-Independent Feature transforms

A simple way to encode a signal’s information is to calculate a series expansion. One common series

expansion used in transient signal classification is time envelope moments [18, 19]. These time-series
features are defined as

u(t)
Dn = e (2.3)
2l
where v(t) is the envelope of time series x(t). This envelope can be calculated using the Hilbert transform
(20]. These moments provide the center of mass, spread, skew and kurtosis of the signal’s time series
envelope. Similar to time moments, spectral moments are also used as features in order to encode a
signal’s spectral shape [18, 21]. These moments are defined as
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Spectral moments provide the signal’s spectral center frequency, bandwidth, skew and kurtosis.

Another approach used to capture spectral shape is a cepstral transform. The cepstral transform is
defined as

c(v) = 51; > log | X (w)| e~ (2.5)

In many applications, particularly speech recognition, this transform has been shown to compact spectral
energy into a small number of cepstral coefficients [22]. This energy compaction allows the spectrum to be
well-described by only a few numbers.

A parametric approach to modeling spectral shape is autoregressive (AR) modeling. This approach
models a signal’s spectra using the form

- 1
X = .
(W) = Zi:[ ake—]wk

with AR parameters {a;};_,. By finding appropriate values for these parameters we can approximate
a frequency response X (w). Methods for finding the parameters of an AR model include Yule-Walker.
Levinson-Durbin, and Burg’s algorithm [23].

In applications where a signal is time-varying, it is sometimes useful to identify features from a joint

time-frequency signal domain. One specific time frequency representation (TFR) is the spectrogram. This
is defined as

(2.6)

2
S(t,w) = Z w(r)z(t + 7)e T (2.7)
T
where h(t) is a finite duration windowing function centered at t [24]. Features calculated from this domain
often consider time and frequency disjointly. One can calculate spectral features as they progress over time
or one can calculate time features as they progress over frequency. The most common example of this is in
speech recognition where new cepstral coefficients are calculated over a series of time windows (or frames)
(22].
Another way to represent a signal with time varying information is in the modulation spectral domain
(25]. One definition of this domain is as the Fourier transform across time of the spectrogram,

M(n,w) = /S(t,w)e‘j”‘dt (2.8)

where w is standard acoustic frequency and 7 is the modulation frequency representing each frequency’s
time-varying structure. In this domain, spectral features can be identified across either acoustic frequency
or modulation frequency.

The above features can be blindly applied to a classification task. The features generally describe a
signal and therefore could be used in the task of classifying between different signals. Alternately, there
have been a number of methods developed for identifying a set of application specific signal features. These
methods uncover features that only describe signal information that is relevant to a particular task and
dataset. Below we review some of the time-frequency methods used to identify these types of features.



Data-Dependent Feature transforms

Many data-dependent feature transforms have been developed from within the wavelets community. The
previous feature sets discussed have individually considered either frequency features over time or time
features over frequency. Wavelet and other orthogonal decomposition methods, however, have the ability
to identify features over both time and frequency (scale). The most well known of these methods is the
‘best-basis’ algorithm [26] (or the related local discriminant basis (LDB) [27]). These methods decompose
the time-frequency plane into a large library of 1-D orthogonal basis functions. Commonly these basis
functions are derived from an overdetermined wavelet packet and/or cosine packet decomposition [28].
The ‘best-basis’ algorithm searches through this library for a set of basis functions that minimize an
information cost metric (e.g. entropy) for a signal (or set of signals for LDB). In effect, this method
identifies regions of time and frequency (scale) that are most relevant for describing a training signal(s).
The features found using these wavelet methods are calculated given a specific signal representation
(e.g. cosine packet or Haar wavelet decomposition). This approach does not address the problem of
which representation is best suited for identifying features. Uncovering a representation that highlights
the differences in time-frequency between signal classes can aid in the identification of useful classification
features. Recent work by Atlas et al. [29, 30] as well as Davy et al. [31-33] have considered this problem

using the broad class of time-frequency representation’s (TFRs) commonly referred to as the Cohen class
(24].

Cohen Generalized Time-Frequency Representation The Cohen approach for the design of a
generalized TFR arises from the Fourier transform in time ¢ applied to the instantaneous autocorrelation
function R(t,7) = 2*(t — §)xz(t + §). This transform defines the auto-ambiguity function

A(0,7) = Fi_e{R(t,7)}
= ZR(t,T)e_Jm (2.9)

where 6 and 7 represent Doppler and delay respectively. The auto-ambiguity domain defines the charac-
teristic function of the Wigner TFR. Therefore, the Wigner distribution is equal to

W(t,w) = Fo L {Fr—u{A(6,7)}}
= ?‘Lﬂ ZZA(07T) IOt =it (2.10)
’] T

From the Wigner distribution we can extrapolate a general class of TFRs by defining a weighting func-

tion ~(#, 7). This kernel operates multiplicatively upon the auto-ambiguity function providing a generalized
TFR given by

G(t,w) = f{_{t{fr_,w{h((), TVA(8,7)}}
= 2% Z Z h(6,7)A(0, 1) IOt g—iwT (2.11)
] T

A weighting function of h(6, 7) = 1 corresponds to the Wigner distribution. Any other nonzero function will
induce an implicit smoothing of the Wigner distribution in time and /or frequency. Any version of G(t,w) is
therefore a smoothed versions of W (t,w). The power of this representation is that all quadratic TFRs can be
obtained from W (t,w) by the application of the appropriate weighting function (24, 30]. For example, in this
framework the spectrogram, S(t,w), is defined by the weighting function h(6,7) = 3, w*(u— FJw(uty )eou
[24].
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Optimizing the Cohen Kernel for Classification The development of TFRs is often motivated by
the expressed goal of accurately describing a signal in both time and frequency. While important for
visualization, this goal may not be optimal for signal classification. Methods have proposed leveraging
TFR design with the expressed goal of classification [29-32]. These methods are used to provide a TFR
more suited to highlight differences between signals of different classes.

To illustrate this approach, consider a two class supervised classification problem in which there exists

ne examples in the training set for each class. Let Iﬁc) represent the i training example from the ¢** class.
Define the class average TFR as

o 1 .
i 3> G @ (2.12)

where GI(C) is the matrix representation of the generalized TFR derived from zgc). Also define the Kol-

mogorov distance between generalized TFRs as

Ak (Gay, Gzy) = [|Gay — Gy [ (213)
where || - ||%. is the Frobenius norm of a matrix.

Using this notation, a class dependent function hcp is found that optimizes a specific classification
criteria. In [29, 30] a class dependent function is defined by

hep = argilnax “E(” - 6(2)"1 (2.14)

This criterion defines an hcp that maximizes the mean distance between signals from different classes. A
variant of this criterion was proposed in [31] (and similarly in (30]) in which the mean distance between
classes was maximized subject to within-class variance. This criterion is

& (G0, @) + & (6,0, G")
hcp = argmax — —y, — —
(G0, @) + 7 (6,0, GP)

where dj (GI(.),EU)) denotes the average Kolmogorov distance of TFRs in class i to the average TFR
from class j. This second maximization is a Fisher-like contrast criterion.

In practice both equation 2.14 and 2.15 lead to a very high-dimensional functional optimization. With-
out any assumptions on the structure of hcp this would be an intractable task. Therefore certain con-
straints must be imposed. In [30], Atlas et al. restricts the weighting function to have only a finite number
of nonzero values. In this approach only the points in 8 and 7 which provide the best separation in TF are
used in ¢cp. These point are identified by rank ordering individual all of kernel points according to class
separation.

In [31, 32], Davy et al. restricts the weighting function to a functional form defined by a limited number
of parameters. Noticing that the TFR is real-valued if and only if the corresponding kernel is real and
symmetric, an appropriate kernel shape would be radially Gaussian (34]. In polar coordinates (p? = 62 + 72
and tan(y) = 6/7) define the radial Gaussian kernel as

d(p, ) = ¢ W (2.16)

The “contour function” o(v) determines the final shape of the kernel. It specifies the bandwidth of the
Gaussian shape for a given angle ¢. To keep the kernel symmetric o is defined via a truncated Fourier
series:

11
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o(Y) = ag + Z a; cos(2:y) + b; sin(2i7)) (2.17)
i=1
where a and b are the Fourier coefficients. With this restriction the optimization of ¢cp only has 2p + 1
parameters to estimate.

2.2.2 Kernel functions

Kernel functions are an alternative method for describing the characteristics of a signal. Instead of directly
calculating signal features, kernels simply use relational measures between signals. The most common form
of a kernel is a Mercer kernel, which is defined as

K (xi,1;) =< d(z:), d(z;) > (2.18)

where ¢(-) is a mapping from input space to a feature space [35]. The power of this approach is that
the underlying feature space does not need to be defined explicitly; only the function that measures the
relation between signals K (z;,z;) is required. These kernel functions are used in modern classifier models
such as the support vector machine (SVM) [36] and the relevance vector machine (RVM) [37, 38].

More recent classifier models have been able to relax the strict Mercer kernel definition. New classifier
models do not require the relational measure to be of inner product form. Modern kernel methods can
handle any distance or similarity metric between signals. Classifier models that make use of these relaxed
kernel are Gupta and Cazzanti’s similarity-based classifier [39] and the potential support vector machine
(PSVM) [40, 41].

Numerous kernel functions have been proposed for automatic classification and regression. Smola and
Schélkopf review a number of the more successful kernel functions in [42]. Three examples of these kernels
are polynomial kernels

Bl o) =14 a0y > $e)F, (2.19)

hyperbolic tangent kernels

K{z:m;) = tanhie < m3, 25 > +9), (2.20)
and most commonly the radial basis kernel

llzi =112
Kizgz5) =e 2 (2.21)
These functions have been successfully demonstrated in previous applications and therefore are often blindly
applied to new applications without a strong rationale.
Recent work has moved beyond these basic kernel choices. Methods for the identification of data-

dependent kernels have been introduced. In 2001, Cristianini et al. [43] introduced the concept of kernel-
target alignment. They define kernel alignment as

K|, K
s (K1, Ka)p (2.22)
V (K1, K1) p (K2, Ko) p
where (K|, Ka)p = >_ij Ki(2i,z;) Ka(xi, x;) is an inner product between Gram matrices for some training
data {z;|i = 1, ..., N}. The kernel alignment is used to measure the agreement between two kernel functions
on a given dataset with 1 meaning perfectly aligned and 0 meaning not aligned at all.
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An appropriate choice of kernel function for a given dataset can be determined by comparing the
alignment of various kernels against an ideal kernel for a specific task. For example, the ideal kernel
function for the two-class problem is Ky(z;,z;) = y; - y;. Cristianini et al. propose that this can be used
not only to identify which kernels are most useful, but also to combine kernels in order to identify improved
kernels for a specific task.

Other studies have attempted to learn a kernel for the application of semi-supervised learning in which
kernel functions are learned from a mixture of labeled and unlabeled data. Examples of these include
Chapelle et al. [44] and Zhu et al. [45]. Methods in this area include using a measure of kernel alignment
to optimize the parameters of a kernel model as well as using semi-definite programming for learning a
non-parametric kernel function.

13




Chapter 3

Application and Data

In this chapter we will introduce the application used to demonstrate our proposed methodologies, active
sonar. First we will provide a brief overview of active sonar. Afterwards, we will discuss three types of
data that have been gathered and specific datasets that are used in this paper.

3.1 Sonar Systems

Sonar (SOund Navigation And Ranging) is a term used to describe systems that extract information about
an underwater environment using the propagation of acoustic waves. Broadly, sonar systems can be divided
into two categories: passive sonar and active sonar. Passive sonar systems require no sound source of their
own. They simply listen to sounds already present in the environment. In contrast, active sonar systems
rely on a self generated sound source. Inferences can be made based on how the generated sound interacts
with the surrounding environment. The examples shown in this paper deal with data generated from active
sonar systems.

A typical active sonar system consists of a source and a receiver. A sound is generated at the source
which then propagates throughout the environment. The sound proceeds to scatter off of any nearby
objects and that scatter is then recorded at the receiver. An idealized cartoon representation of this
operation is shown in Figure 3.1. This figure illustrates the operation of a horizontal line array, where the
source is generated at the front of the line array and a series of receivers trail behind.

The most common applications of active sonar systems are in the detection, localization and classifi-
cation of underwater objects. While current technologies have shown considerable promise in detection
and localization, automatic classification of target objects remains a challenging problem. In littoral en-
vironments sonar systems are often flooded with echoes from numerous objects in the surrounding water.
Current automatic classifiers, while able to distinguish some of the target objects from clutter, tend to be
overly sensitive, often mistaking clutter for targets. The techniques developed in this paper will be demon-
strated in this area of sonar classification with the goal of using psychoacoustic information to improve the
automatic classification of sonar echoes.

3.2 Data

Three active source sonar datasets will be used to validate the methodology outlined in this paper. Below
is a description of each of these datasets.
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Figure 3.1: Cartoon illustrating the operation of an active sonar system (Source: Defence Research &
Development Canada).

3.2.1 U.S. Navy Impulsive-Source Data

The U.S. Navy data is a set of sonar echoes using an impulsive-source active sonar system. All detected
echoes have been isolated into short sound files and are labeled as either a true target or false target
(clutter) based on the known location of all target objects. The “hard-case clutter” subset of the data
is a collection of false target detections that represents all clutter echoes that were misclassified by an
automatic classifier. This clutter subset, along with all detected true target echoes comprise the U.S.
Navy dataset of sonar echoes. We use these echoes in a series of listening experiment in order to identify
perceptual features from the data that will be analyzed throughout this paper. For insight on this dataset,
spectrograms of two hard-case clutter echoes are shown in Figure 3.2.

3.2.2 Boundary 2004 Impulsive-Source Data

Boundary 2004 is another dataset of impulsive-source active sonar echoes that was collected off the coast of
Sicily in the summer of 2004. Detected echoes have been isolated into short sound files and labeled as true
targets and false targets (clutter) based on known locations of the targets. Targets consist of underwater
metallic objects such as surface ships, oil platforms, oil pipelines and ship wrecks. Clutter objects consist
of any non-target echo. Another “hard-case clutter” subset was identified in order to remove any easily
identified clutter examples from the dataset (e.g. artificial spikes in energy that passed the detection
algorithm). The targets and “hard-case clutter” echoes comprise the second dataset that will be used in
the listening experiment of Chapter 4. Spectrograms of a target and clutter echo from this dataset are
shown in Figure 3.3
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Figure 3.2: Spectrograms of two hard-case clutter echoes from the U.S. Navy dataset.
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Figure 3.3: Spectrograms of a) target and b) clutter echoes from the Boundary 2004 dataset.
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Figure 3.4: Experimental setup for modeling the acoustic response of spheres with varying physical para-
meters

3.2.3 Modeled Mine Data

The Modeled Mine dataset is a set of numerically modeled sonar echoes from undersea spheres with
varying physical structure [46]. The modeled spheres were all 0.5 meter in diameter with a varying internal
material contained within a plexiglass shell. These shells were “placed” on a sandy sea floor and a sonar
source/receiver was “placed” 50 meters away. A transmitted broadband source was then simulated and
the scatter from the sphere was recorded at the receiver. Figure 3.4 illustrates this experimental setup.

The sound properties of the material inside the plexiglass shell can be varied to simulate various filling
materials. The main properties of interest are the internal propagation speed of the longitudinal and shear
sound waves. These properties are notably different for explosive-filled spheres and stone (and/or metal)
filled spheres [47], indicating that they could be used to distinguish between the echoes from these different
materials. The location in this parameter space of various explosives and stones/metals is shown in Figure
3:5.

Figure 3.6 presents spectrograms of two of these modeled echoes. Figure 3.6(a) shows a spectrogram of
an echo that was modeled from an explosive-filled object and Figure 3.6(b) shows a spectrogram of an echo
from a stone-filled object. We can immediately see that there is a difference in resonance structure between
these two echoes. If we could identify a signal feature(s) from these echoes that predicted longitudinal
and/or shear sound speed then we would be able to distinguish between these different types of underwater
objects.

In order to create a larger set of echoes, we fit a Gaussian distribution in the parameter space to the
location of the explosives and another distribution to the location of the stones/explosives. A dataset of
25 target echoes and 25 clutter echoes is then drawn from the explosive and stone/metal distributions
respectively. The parameter space of these data points is shown in Figure 3.7(a). Figure 3.7(b) shows a
matrix of distances between all 50 echoes in the dataset. Using this data we will seek to identify signal
features from the echoes that describe this parameter space. Identifying this parameter space is analogous
to identifying perceptual features, but instead we are looking signal features that describe the physics of
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the object instead of the perceptual nature of the object.
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Chapter 4

Listening Experiments

When attempting to improve automatic classification with aural perceptual information, a series of formal
listening experiments must be conducted. This chapter presents the results of a series of experiments
that were conducted using trained impulsive-source sonar operators and naive listeners. The first set of
experiments are classification experiments meant to determine how well humans can distinguish target from
clutter echoes using aural cues alone. While this ability has been anecdotally reported, our study determines
the true performance level of a set of sonar operators and non-expert listeners. Next, the results of a set of
similarity experiments are reported. These experiments provide more detailed information regarding how
humans perceptually organize these sounds.

4.1 Classification Experiments

In this section, we present the results of three listening experiments using trained impulsive-source sonar
operators and naive listeners to identify targets in a cluttered environment. In the first experiment, we
evaluated sonar operator performance in target/clutter discrimination on signals from an impulsive-source
active sonar system. The operators’ ability to distinguish targets from clutter was used as a standard for
comparison in subsequent experiments. In the second experiment, we evaluated the baseline performance
of naive listeners in the same task as the first experiment. In the third experiment, the naive listeners
were given feedback on their decisions, which enabled them to learn to distinguish between targets and

clutter over the course of the experiment, bringing their performance closer to the level of experienced
sonar operators.

4.1.1 Experiment 1: Evaluation of Sonar Operators

The objective of this experiment was to determine if sonar operators can distinguish targets from envi-
ronmental clutter using aural cues alone and, if so, determine how well they can perform this task. The
resulting level of performance is later used as a baseline to compare the performance of naive listeners and
determine whether they can adequately learn the task.

Experimental Setup

Task: A single sound was played and the subject was asked to respond with one of three probability levels:
“none,” for no target present; “low,” for low confidence of target present; or “high,” for high confidence of
target present.
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Table 4.1: d’' values for sonar operators
[ [ St [ S2 [ S3 [ S4d ] S5 ] S6 | ST | S8 | S0 | S10 | Si1 | S12 | S13 | S14 | S15 |
[4]206]138]163]1.21]08 [038]127 [1.72] 0 [-011[0.76 136 1.74 ] 06 [ 1.21 |
| | Ave | Top 4 |
[@T107] 153 |

Subjects: Fifteen sonar operators from the Patuxent River Naval Air Station participated in Experiment
1. Subjects in this experiment reported varying degrees of experience as sonar operators and familiarity
with the task of sonar classification.

Stimuli: The stimuli consisted of 180 impulsive-source sonar signals from the U.S. Navy dataset. The
signals contained 90 true targets and 90 “hard-case clutter” echoes that were randomly drawn from the
complete dataset.

Presentation: The original .wav files were transferred from a laptop computer running Windows 2000
through a Firewire (IEEE 1394) digital interface to a MOTU 868 audio processor (24-bit, 96 kHz). The
MOTU performed a D/A conversion before being recorded and re-digitized at 44.1 kHz onto a digital audio
tape (DAT). From the DAT recordings, audio compact discs were created. Sounds were presented to sonar
operators over Sony MDR-V600 headphones and played from a Panasonic portable CD player. Subjects
were allowed to replay sounds as needed. No feedback was provided to the operators; that is, the subjects
were not informed as to whether or not their decision was correct.

Results and Analysis

Figure 4.1(a) illustrates ROC curves for each subject; Figure 4.1(b) shows average ROC curves with
confidence intervals for all subjects averaged together, and the top 4 subjects. These ROC curves were
computed according to the method described in section 2.1.2. Table 4.1 summarizes the performance of
all of the sonar operators in terms of d’ values. As is evident from the ROC curves and the table, a large
variation in ability was observed. All but two subjects performed above the level of chance, with the
average performance well above chance. These d’ values were determined to be significantly greater than
zero according to a t-test at a level of one percent.

Consistent with the hit and false alarm analysis, the four most sensitive listeners were Subjects 1, 3, 8,
13. The d’ value for these subjects was 1.526. These four listeners were the most likely to detect the target
and discriminate it from the clutter. Accordingly, these four subjects will be used as a point of comparison
to provide a baseline level of performance against which the naive listeners in the following experiments
will be compared.

4.1.2 Experiment 2: Evaluation of Naive Listeners

The objective of this experiment was to compare the discriminative ability of a set of naive listeners to
that of the experienced sonar operators under the same experimental conditions.

Experimental Setup

Task: Same as Experiment 1
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Figure 4.1: a) Individual ROC curves for each sonar operator; b) average and top 4 ROC curves with
operating points for sonar operators.

Table 4.2: d’ values for naive listeners in experiment 2
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Subjects: Eight naive listeners were recruited from the Applied Physics Lab at the University of Wash-
ington. None of the subjects had operational experience in sonar systems. Their understanding of the

sonar classification problem ranged from truly naive to detailed technical understanding of sonar signal
processing.

Stimuli: Same as Experiment 1

Presentation: The naive listeners were presented the .wav files directly from a computer viaa MATLAB™
script. The sounds were presented in random order through an M-audio A/D board over Sennheiser HD
280 Pro headphones. Subjects were allowed to replay sounds as needed.

Results and Analysis

Figure 4.2 gives ROC curves for each subject as well as average ROC curves for all subjects and the top 4
performing subjects. Table 4.2 summarizes the performance of the subjects in the experiment as before. As
in experiment 1, a large variation in ability was observed. Most subjects performed above chance, though
not at the high-performance level of the sonar operators. Overall, the d' values were still significantly
greater than zero at a level of one percent. The top 4 naive subjects performed comparable to the average
of the sonar operators, but not at the level of the top 4 sonar operators.

Two non-smooth ROC curves can be seen in Figure 4.2(a). Such curves result from a subject not using
all decision levels. One subject never called clutter a “high probability detection,” resulting in a false alarm

rate of zero for the high-threshold decision point. A second subject did not use one of the rating categories
altogether.
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Figure 4.2: a) Individual ROC curves for each naive listener in experiment 2; b) average and top 4 ROC
curves with operating points for naive listeners in experiment 2.

4.1.3 Experiment 3: Training of Naive Listeners

The objective of this experiment was to provide training to the naive listeners to determine whether they
could achieve a level of performance comparable to that of the expert sonar operators. Training was in the
form of feedback following each trial. The feedback enabled the subject to learn the differences between
targets and clutter through a process of trial and error.

Experimental Setup

Task: Same as Experiment 1
Subjects: Same as Experiment 2

Stimuli: An additional 58 signals were added to the dataset used in experiments 1 and 2, to allow for
more training time. This increased the set to 119 true targets and 119 “hard-case clutter” echoes.

Presentation: Same as Experiment 2, except feedback was also given to the subject after each decision,
informing them as to whether their response was correct or not.

Results and Analysis

Figure 4.3 and Table 4.3 illustrate subject performance in terms of ROC curves and d' values. The first
50 responses were discarded to exclude learning effects from the analysis. In this experiment, all subjects
performed well above chance. There was consistent ability across subjecfs after allowing time for learning.
Feedback clearly improved the classification level, both in higher correct detection rate and lower false

alarm rate. The average performance of the naive listeners with feedback was comparable to that of the
top 4 sonar operators.
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Figure 4.3: a) Individual ROC curves for each naive listener in experiment 3; b) average and top 4 ROC
curves with operating points for naive listeners in experiment 3.

Table 4.3: d' values for naive listeners in experiment 3
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4.2 Similarity Experiments

In this section, we present the results of two aural similarity experiments using U.S. Navy and Boundary
2004 sonar data sets. These empirical similarity measures provide detailed information on the perceptual
distribution of these sounds.

4.2.1 Experiment 4: U.S. Navy Similarity

Experimental Setup

Task: Each subject was presented two sounds in succession. The subject was then asked to rate how
similar the sounds were on a scale of one to five (one being very similar and five being very different).
After receiving instructions the subjects were given five “practice” trials in order to get a sense of the task.
These practice trials were not included in the results or analysis.

Subjects: Same as Experiment 2

Stimuli: As a rule of thumb, the number of stimuli required in multidimensional scaling (MDS) ex-
periments is at least n = ‘%’“ + 1, where n is the number of stimuli, k£ is the number of expected MDS
dimensions and m is the number of subjects that rate each pair [16]. In order to decrease the load on
the subject while also allowing for the possibility of up to 5 dimensions, a set of 50 targets and 50 clutter
echoes were randomly chosen from the U.S. Navy dataset. Even with only 100 stimuli, the number of

pair-wise combinations to be judged by each subject would have been 4950. In order to accommodate this
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Figure 4.4: Aural similarity matrix for both targets (echoes 1-50) and clutter (echoes 51-100) from the

U.S. Navy dataset. Note that only upper right quadrant corresponding to clutter-clutter pairings will be
used in the analysis shown in this paper.

large number, the set of pairings was randomly divided into four subsets with each subset rated by two
subjects [48].

Presentation: Subjects were presented .wav files directly from a computer via a MATLAB™ script.
The stimulus pairs were presented in random order through an M-audio A/D board over Sennheiser HD
280 Pro headphones. Subjects were allowed to replay stimulus pairs as desired.

Results

Figure 4.4 shows the perceptual similarity matrix § that results from the subjects’ similarity responses.
Each entry in the matrix represents one stimulus pair. The matrix is exactly symmetric as only one ordering
of the stimuli was used and the resulting data were reflected about the diagonal. Each stimulus pair was
presented to two subjects, each of whom rated the similarity between 1 and 5, one being very similar
and 5 being very different. The two subjects’ responses were averaged and entered into the matrix. Note
that the lower left quadrant of the matrix, corresponding to target-target stimulus pairs, has substantially
lower values than the rest of the matrix, indicating more similar sounds. The values in the lower right
quadrant (target-clutter pairs) are much higher, indicating that targets and clutter were usually judged
more dissimilar. The upper right quadrant (clutter-clutter) has a wide range of values compared to the
other two quadrants, which suggests that the clutter examples are not a single stimulus class, but rather
span a wide range of stimulus types that differ from the target class. This similarity matrix is used in later
analysis to identify relevant perceptual features.

4.2.2 Experiment 5: Boundary Similarity

Experimental Setup

Task: Each subject was presented two sounds in succession. The subject was then asked to rate how
similar the sounds were on a scale of one to ten (one being very similar and ten being very different). The
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Figure 4.5: Aural similarity matrix for both targets (echoes 1-25) and clutter (echoes 26-50) from the
Boundary 2004 dataset.

range was increased from the previous similarity experiment as to give the subjects more freedom with
their responses.

Subjects: Eight subjects were recruited from the department of electrical engineering at University of
Washington. None of the subjects had operational experience in sonar systems.

Stimuli:  All 50 echoes from the Boundary 2004 dataset were used. This set included 25 target echoes
and 25 clutter. With 50 stimuli, the number of pair-wise combinations to be judged is 1225. In order
to accommodate this large number, the set of pairings was randomly divided into two subsets with each
subset rated by four subjects [48].

Presentation: Subjects were presented .wav files directly from a computer via a Matlab script. The
stimulus pairs were presented in random order through an M-audio A/D board over Sennheiser HD 280
Pro headphones. Subjects were allowed to replay stimulus pairs as desired.

Results

The results of this similarity experiment are shown in Figure 4.5. Each stimulus pair was presented to
four subjects, each of whom rated the similarity between 1 and 10. The four subjects’ responses were then
averaged and entered into the matrix. As before, the similarity matrix is exactly symmetric as the results
were reflected about the diagonal. The lower left quadrant (target-target pairings) again has relatively
lower values while the the lower right quadrant (target-clutter pairings) has higher values. While this
distinction is not as noticeable as in the previous experiment, there still seems to be some class separation.
The increased variability seen in the target-target pairings could be due to the fact that the type of targets
in the Boundary 2004 data are not as uniform as in the U.S. Navy data. This similarity matrix will also
be used in later analysis to identify new perceptual features.
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4.3 Discussion

While there has been much anecdotal evidence, these experiments validate the conventional wisdom that
sonar operators are capable of discriminating between impulsive-source active sonar target and clutter
echoes solely on the basis of aural cues (listening). This ability indicates there is benefit to further inves-
tigation into how subjects perform this task. In addition, it was shown that naive listeners can be trained
to perform the discrimination task to a level comparable to that of sonar operators. The “trained” naive
listeners thus form a subject pool that can be used in place of operators in the more involved similarity
listening experiments. Finally, results collected in the similarity experiment also show a strong difference
between signals of different classes. This experiment contained more information regarding the distribu-
tions of the targets and clutter relative to one another. In the following chapters we will use this additional
perceptual information to identify signal attributes that are being used by the subjects.




Chapter 5

Feature Identification

This chapter introduces a new technique for learning perceptually relevant acoustic features found from
listening experiment data. The first section describes the standard approach for analysis and feature
identification using similarity data. Next, an alternate approach is proposed in which optimal features are
found by maximizing their fit to the listening experiment results. These feature identification methods are
then demonstrated on the U.S. Navy, Boundary 2004 and Modeled Mine datasets.

5.1 Standard MDS Analysis

Multidimensional scaling (MDS) is a technique used to identify a low-dimensional space in which distance
between data points reflects their known degree of similarity [16, 17]. In psychoacoustics, the space found
by MDS can be interpreted as a perceptual feature space in which the dimensions represent the acoustic
cues that are used in judging similarity. Therefore, the goal of perceptual feature identification is to identify
what numeric features best represent each of the dimensions of the MDS space.

In previous studies [10, 12, 14, 15], a number of hypothesized signal features, ¢;(-), are first calculated
for each sound. Each of these features is then correlated with their corresponding location along each
dimension of the MDS analysis. This correlation is done via the inner product,

Pik = < ¢i(x), ck(x) > (5.1)

where ck(-) represent the MDS values for along dimension k£ and p; ; represent the correlation between
feature i and MDS dimension k. This correlation provides a metric defining the degree of perceptual
relevance for each of our hypothesized features. Perceptual features are then identified according to which
features provide the highest correlation to each dimension.

Following this approach, we utilize a set of 33 candidate features to correlate against our MDS results.
Some of features are standard amplitude and shape statistics calculated from the time series and the
spectrum (e.g. mean, standard deviation, skewness, kurtosis). Others were perceptually-motivated features
found from previous perceptual studies (1, 14, 49]. These features include time-frequency features such as
subband correlation, subband rise time, and spectral flux, as well as other classes of features. A complete
list of these features along with definitions can be found in Appendix A.

This approach is completely dependent upon the initial choice of features to correlate. It also provides
no avenue for uncovering new features using the perceptual data. Thus a new, data driven, approach is
desired that can learn the currently unknown signal features that account for perceptual similarity while

not requiring an a priori choice of candidate features. The following section illustrates an approach for
achieving this goal.
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5.2 MDS Fitting

In order to identify new signal features that account for perceptual similarity, we follow a systematic
approach in which perceptually relevant features are learned by optimizing over a broad class of signal
features ¢ (). This approach utilizes an infinite set of candidate signal features defined by continuous
parameter(s) h as opposed to a finite collection of hypothesized features. By finding the h that provides
the best fit between the feature vector ¢p(x) and the MDS data, we can uncover novel features that are
relevant to perception. To find this h, we explicitly maximize the magnitude of the correlation of g (x)
with the k*" MDS dimension according to

!2

. |< ¢n(x), ck(x) >
hy = argmax
e [1AlI?

This maximization yields a feature, q’)ﬁ(-), that is optimally correlated to the perceptual results within the
chosen class of features.

The class of signal features to use can be chosen based upon the specific application. The broader and
more descriptive the class of features are, the better the fit will be to perception. Since the auditory system
relies on time-frequency-like decomposition, and sonar echoes are time-varying in nature, we demonstrate
this approach using features derived from a time-frequency representation (TFR).

(5.2)

5.2.1 Constrained Weighting Function

Expanding upon previous work by Atlas et al. [29, 30] as well as Davy et al. [31-33], we first demonstrate
this approach using features identified from a generalized TFR. As Cohen showed [24], all quadratic TFRs
can be represented by a two-dimensional Fourier transform of a weighted ambiguity function,

Galt,w) = Fy L {Frufh(8,7)A(6,7)}} (5.3)

where G}, (t,w) is generalized quadratic TFR and h(0, 7) is delay-Doppler weighting function. By constrain-
ing h to be a function of only a few parameters, Davy et al. [31-33] were able to solve for the weighting
function that produced a generalized TFR with maximal discrimination power.

Using this framework we define a class of features based on the energy contained in a generalized TFR,

¢n(z) =) Gh(t,w) (5.4)

The extent of the weighting function in both delay and Doppler directly affects the energy content in the
TFR. Therefore, our goal according to (5.2) is to find the weighting function, iL(O,T), that produces a
generalized TFR whose energy is maximally correlated to the MDS results.

Following Davy’s approach we parameterize h to reduce the number of variables to be estimated.
Restricting h to be a two-dimensional mixture of Gaussian distributions in delay-Doppler space,

Pt 6 — poi\* 0—poi\ (T bri i)’
o= oo - (S522) - (S522) (522) + (522))] o
i=1 : ‘ h h

we need only solve for the means and variances for each Gaussian term. With this set of parameters we
maximize the correlation via constrained optimization.

i
o
~
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5.2.2 Unconstrained Weighting Function

Another class of features derived from the time-frequency domain is a weighted spectrogram. This set of
features is found based on a weighting function applied directly in the time-frequency domain. They are
defined according to

on(z) = Zh(t,w)SI(t.w) (5.6)
t,w

where S;(t,w) is the spectrogram of signal = and h(t,w) is a time-frequency weighting function. With
features of this form our approach will identify regions of time-frequency that are relevant to perception.

For this class of signal features, the optimal time-frequency weighting function can be solved for directly.
Combining (5.6) with (5.2) we get

hj. = argmax 2. ck(zi) Zt,u h(t,w)Se,(t,w)
o gh Et,w h2(t,w)

Since the denominator depends only on the energy in h(t,w), the maximum can be obtained my maximizing
the numerator subject to the assumption that the denominator is fixed and non-zero. Rearranging the
summations and applying the Cauchy-Schwarz inequality to the numerator we arrive at

D htw) - ew(@i)Ss, (tw)
tw 1
<) ST S k(i) Sa(tw)| (5.8)
tw t,w i

(5.7)

2

Equality is met when h(t,w) is equal to an integer multiple of >, cF(x:)Sz, (t,w). Therefore, the solution
to (5.7) with minimum energy h(t,w) is

hi(t,w) = ) e(#:) Sz, (¢, w) (5.9)
i
The optimally correlated weighting function is a perceptually-weighted sum of spectrograms.
This solution is advantageous as it provides a closed-form solution and therefore requires no constraining
of the weighting function. While we have demonstrated this derivation using a time-frequency weighting
function, the derivation also holds for a weighting function applied to any signal representation.

5.3 Example 1: U.S. Navy Data

Figure 5.1(a) shows a two-dimensional, nonmetric, MDS projection of the U.S. Navy signals using the
perceptual similarity measures from Experiment 4 (Section 4.2.1). This figure shows strong separation
between targets and clutter along the dimension 1 axis in this perceptual space. This visual insight
confirms that if we do find physical signal attributes that correlate to this space, then those signals should
produce reasonable classification features. Figure 5.1(b) shows a similar MDS space found using only the
clutter similarity measures. The feature identification presented below will be based on the clutter-only
MDS space due to restrictions on the target signals.
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Figure 5.1: Two dimensional nonmetric MDS projection using a) the full U.S. Navy similarity matrix from

Experiment 4 and b) the clutter-only similarity scores from the upper right quadrant of the similarity
matrix.

Standard Features

Using the traditional approach, we first attempt to identify if any standard features correlate well with
each MDS dimension. We make use of a standard set of features that have proven to work well in past
studies [1], [14], [49]. These features are defined in Appendix A. The correlation coefficients for these
standard features against each MDS dimension is shown in Table A.1. The features exhibit a wide range of
correlation values. The feature with the strongest correlation value is the maximum subband correlation
frequency (maxSBCorrFreq) with a correlation value of 0.6068 to MDS dimension 1. This feature is a
measure of the frequency location at which subband time envelopes are most correlated. Additionally, the
feature with the highest correlation to dimension 2 is the frequency of minimum global subband attack
time (MinGSATimeFreq), although this only correlated at a level of 0.3969.

This analysis suggests that subband correlation is a perceptually relevant feature. However, while
being the best match to the MDS space, this feature only provides a correlation coefficient of 0.6068. This
moderate level of correlation indicates that we have not found a highly meaningful representation of this
perceptual space. The problem stems from the fact that this technique is highly dependent on the initial

choice of features. Even with a set of 33 previously known features, only one correlated somewhat well to
dimension 1 and none to dimension 2.

Generalized Time-Frequency

Optimal delay-Doppler weighting functions for MDS dimension 1 and 2 were found using a mixture of
three Gaussian distributions. These weighting functions are shown in Figure 5.2. They isolate locations in
ambiguity space that produce a generalized TFR whose energy is correlated to the MDS dimensions. Using
these weighting functions we can identify features ¢;,(z) and ¢;,(z) via (5.4). Features found from these
weighting function have correlation values of 0.6408 and 0.4682 to MDS dimensions 1 and 2, respectively.

These correlations are not only higher than any individual feature, but required no a priori knowledge of
potential feature sets.
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Figure 5.2: Delay-Doppler mask for a) dimension 1 and b) dimension 2 of the U.S. Navy MDS analysis.

Time-Frequency Weighting Function

Figure 5.3 illustrates the optimal time-frequency weighting functions for MDS dimensions 1 and 2 found
according to (5.9). These functions emphasize regions of time-frequency that play an important role in each
MDS dimension. Specifically, sonar echoes that exist in negative regions of the time-frequency weighting
function will tend towards the negative end of the MDS space and sonar echoes that exist in positive
regions will tend toward the positive region of the MDS space. From the weighting functions, we see that
dimension 1 appears to differentiate between relatively short duration high frequency signals and diffuse
low-frequency signals. Similarly, dimension 2 reverses the roles of high and low frequency, differentiating
between diffuse high frequency and short duration low frequency signals.

Using these weighting functions, we also identify signal features ¢;,(z) and ¢;,(x) via (5.6). These
new features have a correlation coefficient of 0.8040 and 0.7646 to dimensions 1 and 2, respectively. These
values are much higher than any single feature found from the standard feature set, indicating that these
weighting functions not only give visual insight into the nature of the perceptual space but also identify
good perceptual features.

5.4 Example 2: Boundary 2004 Data

A two-dimensional, nonmetric, MDS projection of the Boundary 2004 signals using the perceptual similarity
measures from Experiment 5 (Section 4.2.2) is shown in Figure 5.4. This space reveals distinct perceptual
clustering within each class. For example, one group of targets lies toward the far left of the plot, while
another group lies towards the upper right. This perceptual distinction is most likely a result of the listeners
distinguishing between different types of targets. In contrast to the U.S. Navy data, these signals require
both dimension to best distinguish between classes.

Standard Features

Values for the standard feature set correlated against the Boundary 2004 MDS dimensions is shown in
Table A.2. The feature with the strongest correlation, spectral rolloff (specRolloff), is a measure of how
concentrated a signal’s energy is towards low frequency. That is, it distinguishes between low and high
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Figure 5.3: Perceptually-weighted spectrogram for a) dimension 1 and b) dimension 2 of the U.S. Navy
MDS analysis (clutter-only).
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Figure 5.4: Two dimensional nonmetric MDS projection using the full Boundary 2004 similarity matrix
from Experiment 5.
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Figure 5.5: Delay-Doppler mask for a) dimension 1 and b) dimension 2 of the Boundary 2004 MDS analysis.

frequency signals. Spectral rolloff correlates with MDS dimension 1 at a level of -0.8205. The feature with
the greatest correlation to dimension 2 is rise time with a value of 0.5449.

Generalized Time-Frequency

Optimal delay-Doppler weighting functions for MDS dimension 1 and 2 were again found using a mixture
of three Gaussian distributions. They are shown in Figure 5.5. From these weighting functions, we derive
features that correlate with MDS dimension 1 and 2 at a value of 0.7240 and 0.4108, respectively. In this
case, these features came close, but did not exceed the correlation value for the best standard features.
One reason for this may be that the delay-Doppler plane r{fay e a improper space to work in for these
types of sonar echoes. Another possible reason could be that the gaussian mixture model we imposed could
be a incorrect constraint for the delay-Doppler weighting function.

Time-Frequency Weighting Function

Figure 5.6 shows the optimal time-frequency weighting functions for MDS dimension 1 and 2 using the
Boundary 2004 data. From Figure 5.6(a) we infer that dimension 1 discriminates between low and high
frequency signals. This frequency dependence is expected because the known feature Spectral Rolloff
correlated well to this dimension. In addition to this frequency selectivity, the weighting functions also
reveal that the group of target signals on the negative end of dimension 1 have a characteristic double
echo as seen in the figure. The dimension 2 weighting function appears to isolate a very short duration
high frequency echo from a longer lower frequency echo. Features derived from these functions correlate
to MDS dimensions 1 and 2 at a level of 0.9160 and 0.7160, respectively. This correlation is higher then

any previous feature.

5.5 Example 3: Modeled Data

The two-dimensional parameter space for the Modeled Mine data is shown in Figure 5.7(a). This space
represents the physical composition of the underwater objects that were used to model these signals. We
use this space in a similar manor to the MDS space, except in this case we are looking for signal features
that describe the physical parameter space as opposed to the perceptual space.
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Figure 5.6: Perceptually-weighted spectrogram for a) dimension 1 and b) dimension 2 of the Boundary
2004 MDS analysis.

From this parameter space we notice that there is strong correlation between dimensions 1 and 2. To
remove this correlation we employ Principle Component Analysis (PCA). PCA is used to rotate a space in
order to isolate principle dimensions of variance. The rotated space after PCA is shown if Figure 5.7(b).
Potential features will be correlated to these principle dimensions.

Standard Features

Values for the standard feature set correlated against the Modeled Mine parameter space are shown in
Table A.3. Spectral Spread (specSpread) had the strongest correlation to dimension 1 with a value of
0.8521. The feature with the strongest correlation to dimension 2 is the frequency of minimum local
subband attack slope (MinLSASlopeFreq). This correlated at a level of -0.3699.

Generalized Time-Frequency

Optimal delay-Doppler weighting functions for Modeled Mine parameter space were found using a mixture
of three Gaussian distributions. They are shown in Figure 5.8. Features derived from these weighting
functions correlated with each dimension at a value of 0.9065 and 0.4553.

Time-Frequency Weighting Function

Figure 5.9 shows the optimal time-frequency weighting functions for dimension 1 and 2 of the Modeled

Mine parameter space. From these weighting functions we see a distinct resonance, or beat, pattern in time-

frequency. The physical parameter space seems to distinguish between resonance structure located at low

frequency and resonance structure located at high frequency. In addition to the time-frequency domain, the

modulation domain (Section 2.2.1) is another space that efficiently isolates resonance structure. Therefore,

we can demonstrate this approach on the modulation spectra of our signals as opposed to the spectrogram.
Using a modulation approach, our new class of features are defined as

$n(z) =Y h(n,w)Mq(n,w) (5.10)

n,w
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Figure 5.8: Delay-Doppler mask for a) dimension 1 and b) dimension 2 of the Modeled Mine parameter

space (after PCA).

where M, (n,w) is the modulation spectra and h(n,w) is a modulation-acoustic frequency weighting
function. Following the same approach as before we can identify the optimal weighting function by a

perceptually-weighted sum of modulation spectra.

Figure 5.10 shows the optimal modulation weighting function for each dimension of the parameter
space. These figures again show a nice separation between low frequency resonance and high frequency
resonance. The advantage of working in the modulation spectra is that this space is time-invariant. That
is, it does not require time alignment of the signal to detect resonance patterns across the signals. Features
derived from these modulation weighting functions correlate to dimension 1 and 2 of the parameter space
at a level of 0.9187 and 0.3962, respectively.
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Figure 5.9: Perceptually-weighted spectrogram for a) dimension 1 and b) dimension 2 of the Modeled Mine
parameter space (after PCA).
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Figure 5.10: Perceptually-weighted spectrogram for a) dimension 1 and b) dimension 2 of the Modeled
Mine parameter space (after PCA).
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Table 5.1: Summary of correlation values for each dataset
Correlation to Dimension 1 Correlation to Dimension 2
U.S. Navy Best Standard Feature 0.6068 0.3969
Delay-Doppler Mask 0.6408 0.4682
Time-Frequency Mask 0.8040 0.7646
Boundary 2004  Best Standard Feature -0.8205 -0.5449
Delay-Doppler Mask 0.7240 0.4108
Time-Frequency Mask 0.9160 0.7160
Modeled Mine Best Standard Feature 0.8521 -0.3699
Delay-Doppler Mask 0.9065 0.4553
Modulation-Frequency Mask 0.9187 0.3962

5.6 Discussion

We proposed a new approach for learning perceptually relevant features from listening experiment data.
Traditionally, standard feature statistics are correlated against multidimensional scaling data to identify
the feature with the greatest correlation. We introduced MDS matching in which an explicit maximiza-
tion is performed to identify the best feature over a general class of signal features. This approach was
demonstrated using two types of weighting functions: constrained and unconstrained.

The results from three different datasets are summarized in Table 5.1. The highlighted features repre-
sent the most correlated feature to each perceptual space. In each case the weighting functions outperform
features drawn from a standard set. The MDS matching approach not only identified strong perceptual
features without requiring a priori knowledge of candidate features, but also provided visual insight into
the perceptual space.




